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This note deals with the derivation of the optimal thrust control of a 
rocket vehicle constrained to fly in the horizontal plane in order to 
attain maximum range. It is assumed that the gravitational acceleration 
is constant and the aerodynamic drag is approximated by the so-called 
parabolic drag polar.** It is shown that the optimal thrust program con- 
sists of at most three thrust regimes. The uniqueness, and hence the 
global nature of the maximum, is shown. 

The equations of motion are 

t;+;++o, z--v=0 (1) 

t = 0, x = 0, m = ml, V = VI; t = te, m = m2, V = Vz, z(ta) = max 

where g is the acceleration of gravity (constant); III is mass; x is range; 
V is speed; D is drag; c is exhaust speed (constant) and (I) represents 
d/dt. 

Here we shall assume a parabolic drag polar 

D = AVa + BLp A = const, B = con&) (2) 

l 

l * 

This is the original English text of this American paper, of which 
the Russian version appeared in PMM Vol. 27, No. 3. 1963. 

The same problem has been treated earlier, [ll, for a drag of the 
form D = A? + BL2/V2, A and B constants. The derivation in [d is 
quite long and involved, however. The “singular” portion of the solu- 
tion was also found in [21. 
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L = ‘6 
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where lift 

We shall aleo take the thrust T = - c; to he bounded 

O-G- & B T,,, 

and asBume that T,., sufficiently large 80 that 

T mrx >Dm*x 

We now introduce nondimensional variables 

_g-t %=C 9 E=&, r=;. 

so that the equations of motion become 

n’+DoI,-&=O 
P P ’ 

E’- 0 = 0, 

V 
v=- 

c 

(3) 

(4) 

(5) 

0-V 

p’+B=o (7) 

z = 0, E = 0. p = I, v = 01 

where 

z = Zl, p = pa, v = 9, E(~s) = max 

D 
AC+ 

=mlgv~+Bmlglca=aus+~a 09 

Primes indicate differentiation with respect to dimensionless time. 

Inequality constraint (4) we shall state as 

The problem is 

C(T*) is maximum, 

is ainialMl L3.41. 

0 Q B G Bmax (9) 

to determine the optimal thrust P(T) so that the range 

I. e. 

1. Adjoint equations: 

An’ - h, ++\=o, I,‘=O, a$+b,(+g=o 

2. Opt iral control: 

ma+, 
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i.e. H is linear in control P and switching function 

KA- -A, 
P 

so that 

B = Bmax if K>O, p=O if K<O, P = P(z) 

The “singular” arc K E 0 may be admissible if the 
is admissible, i.e. satisfies (9). 

3. Transversal ity condition: 
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(13) 

for KsO (14) 

corresponding P(T) 

- dE (za) + [A, do + ledE + APd,. - H dzll* = 0 

In view of the end conditions 

(15) 

dE (0) = do (0) = dv (2~) = 4 (0) = & (T,) = dzl = 0 

so that 

Le (‘GS = 1, H (21) = 0 

4. First integral: 

(16) 

(17) 

Since equations (7) are autonomous and H is continuous 

H=O (18) 

is a first integral. It can replace any one of the adjoint equations 

(11). 

5. Corner conditions: 

H and the Ai are continuous. 

6. Synthesis of optimal control: 

First we shall investigate the “singular” solution K E 0. For this 

sol ut ion 

K’ = 0 (19) 

as well. Now upon differentiation of K and use of (18) with K = 0, 
name1 y 

- I++ l,v = 0 (20) 

together with the first equation in (17) and (11). we get 
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K’=f- 
P 

i.e. for drag of form (8) 

K’ = m!!m P (v + 1) (as’ - w’) 

so that, for v > 0, (19) becomes 

p= vulb v 

Figure 1 shows this solution. 

Fig. 1. Fig. 2. 

With assumption (5). i.e. 

P max a &ix 

the singular solution certainly satisfies (9). since 

i.e. 

(21) 

(22) 

(23) 

(24) 

(25) 

Now end conditions may be such that initial and end points may lie 
either to the left or the right of the *singular” arc K E 0. Figure 2 
shows one of these cases together with “boundary arcs’ connecting the 
“singular” arc to the end points. 

We suspect that this is the solution, However, we must show that it 
is the only admissible one. Figure 3 shows other possibilities. 
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It is easy to show that such arcs are 

not admissible. For. at corners 

K=o (27) 

since it is continuous. Hence, at corner 

a) K’<O, i.e. ava-+a<O 

b) K’>O, i.e. avP-l@>O 
WI 

u 
but 

Fig. 3. 
P (a) = P W v (a) > 0 (b) (2% 

which contradicts (28). A similar argument rules out corners c and d. 

as well as all such other corners.+ 

Finally, Fig. 4 shows the solution for other end conditions. 

In conclusion we note: 

cr 
1 ---_-- _ 

P= 

~ 

=O 
------_ 

a) The solution is made up of at most three thrust regimes. 

b) Since the solution for the local maximum is unique. it yields a 

global maximum (as borne out by the application of the Green’s Theorem 

Method, Chapter 3 of Optimization Techniques, [51) . 

* Note that the occurrence of more than one corner in either region is 
ruled out, since at a corner, K = 0. K’ < 0 above and K’ > 0 below 

the singular solution line. 
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